منابع مشابه
Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells.
Skeletal muscle damaged by injury or by degenerative diseases such as muscular dystrophy is able to regenerate new muscle fibers. Regeneration mainly depends upon satellite cells, myogenic progenitors localized between the basal lamina and the muscle fiber membrane. However, other cell types outside the basal lamina, such as pericytes, also have myogenic potency. Here, we discuss the main prope...
متن کاملActivating muscle stem cells: therapeutic potential in muscle diseases.
PURPOSE OF REVIEW The satellite cell is the principal muscle stem cell. Recent research, however, has highlighted new stem cell sources that, once activated in the muscle tissue, can participate in muscle regeneration. This article reviews the state of research on stem cell populations that have potential for treatment of muscular dystrophies. RECENT FINDINGS Despite recent findings about the...
متن کاملRegenerative Potential of Endometrial Stem Cells: A Mini Review
Recent findings in stem cell biology have opened a new window in regenerative medicine. The endometrium possesses mesenchymal stem cells (MSCs) called endometrial stem cells (EnSCs) having specific regenerative properties linked to adult stem cells. They contribute in tissue remodeling and engineering and were shown to have immuno-modulating effects. Many clinical trials were undertaken to asce...
متن کاملHealing potential of stem cells for diabetic ulcers
A wound is described as any laceration in normal anatomic structure and functional integrity of the skin. Chronic wounds don’t progress through the normal wound healing process in 3 months leaving open laceration of different degrees of severity. Diabetic wound healing is an insurmountable process due to the chronic nature of diabetic wounds. For these complications, this has been a challenge i...
متن کاملReprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Developmental Cell
سال: 2001
ISSN: 1534-5807
DOI: 10.1016/s1534-5807(01)00049-1